

Introduction to
Relational Databases

Part 1: Why?

Claude Rubinson
University of Houston—Downtown

rubinsonc@uhd.edu
cjr@grundrisse.org

September 21, 2011

What Makes a Database
Relational?

● Based on relational algebra (set-theory)
● ACID properties

● Atomicity
– Transactions are “all or nothing”

● Consistency
– Database is always in a consistent state

● Isolation
– One transaction doesn't affect another

● Durability
– Transactions persist across system crashes

Relational Databases versus
Conventional Datasets

● Many tables rather than one
● Rows are unordered
● Columns are unordered
● Relationships among tables (database

schema) represent the structure of the
data

Why Use a Relational
Database?

Conventional answer (for organizations):
● Scalability, reliability, industry-standard

For individuals:
● Supports post-hoc/ad-hoc queries
● Allows (encourages, forces) you to

accurately model the domain of interest

Some Terminology

● Tables (Relations, Relvars)
● Rows (Tuples)
● Columns (Attributes)
● Primary Keys

Programmers

ProgUID LastName FirstName

1 Ritchie Dennis

2 Stallman Richard

3 Torvalds Linus

6 Wall Larry

Relational Database Design

● Normalization—the process of
eliminating redundancy

● Functional dependencies
● “If I know one attribute, I can determine

another”
● Singular dependencies: A -> B
● Multivalued dependencies: A ->> B
● Defines the structure of the data

Normalization

● The process of eliminating redundancy
● Done wrong, the database will be

difficult to maintain and information will
be difficult or impossible to retrieve.
Even worse, incorrect information may
be retrieved.

Conventional Database

Class Teacher Student
Econ 101 Smith John
Econ 101 Smith Mary
Econ 101 Smith Jane
Econ 201 Smith Jane
Art Hist 101 Jones Mary
Art Hist 101 Jones Smith

Normalized Database
People

PersonUID Person Age

1 Smith 46

2 Jones 38

3 John 22

4 Mary 18

5 Jane 24

6 James 24

Normalized Database
People

PersonUID Person Age

1 Smith 46

2 Jones 38

3 John 22

4 Mary 18

5 Jane 24

6 James 24

Normalized Database

Classes

ClassUID Class

1 Econ 101

2 Econ 201

3 Art Hist 101

4 Soc 101

People

PersonUID Person Age

1 Smith 46

2 Jones 38

3 John 22

4 Mary 18

5 Jane 24

6 James 24

Normalized Database

Classes

ClassUID Class

1 Econ 101

2 Econ 201

3 Art Hist 101

4 Soc 101

People

PersonUID Person Age

1 Smith 46

2 Jones 38

3 John 22

4 Mary 18

5 Jane 24

6 James 24

ClassTeacher

ClassUID PersonUID

1 1

2 1
3 2

Normalized Database

Classes

ClassUID Class

1 Econ 101

2 Econ 201

3 Art Hist 101

4 Soc 101

People

PersonUID Person Age

1 Smith 46

2 Jones 38

3 John 22

4 Mary 18

5 Jane 24

6 James 24

ClassTeacher

ClassUID PersonUID

1 1

2 1
3 2

ClassStudents

ClassUID PersonUID

1 3

1 4

1 5

2 5

3 4

3 1

What is SQL?

● Structured Query Language
● Pronounced “Ess Que El” or “Sequel”
● Standardized, English-like language for

interacting with Relational Database
Management Systems (RDBMS)

● Set (technically, “Bag”) based
● Declarative (non-procedural) language
● But, incompatible proprietary extensions

Query Language

SELECT * FROM People;

Query Language

SELECT * FROM People;

personuid | person | age
----------+--------+----
 1 | Smith | 46
 2 | Jones | 38
 3 | John | 22
 4 | Mary | 18
 5 | Jane | 24
 6 | James | 24
(6 rows)

Query Language

SELECT person FROM People
WHERE age >= 20
ORDER BY person;

Query Language

SELECT person FROM People
WHERE age >= 20
ORDER BY person;

 person

 James
 Jane
 John
 Jones
 Smith
(5 rows)

Query Language

SELECT avg(age) as avg_age,
FROM People
WHERE age >= 20;

Query Language

SELECT avg(age) as avg_age,
FROM People
WHERE age >= 20;

 avg_age

 30.8000000000000000
(1 row)

Query Language

SELECT Classes.class, count(*) as N
FROM Classes, ClassStudents as CS
WHERE Classes.classuid=CS.classuid
GROUP BY Classes.class
HAVING count(CS.personuid) >= 2;

Query Language

SELECT Classes.class, count(*) as N
FROM Classes, ClassStudents as CS
WHERE Classes.classuid=CS.classuid
GROUP BY Classes.class
HAVING count(CS.personuid) >= 2;

 class | n
--------------+---
 Art Hist 101 | 2
 Econ 101 | 3
(2 rows)

Query Language

 class | n | teacher
--------------+---+---------
 Art Hist 101 | 2 | Jones
 Econ 101 | 3 | Smith
(2 rows)

Query Language
SELECT Classes.class, count(*) as N

FROM Classes, ClassStudents as CS

WHERE Classes.classuid = CS.classuid

GROUP BY Classes.class
HAVING count(CS.personuid) >= 2;

 class | n | teacher
--------------+---+---------
 Art Hist 101 | 2 | Jones
 Econ 101 | 3 | Smith
(2 rows)

Query Language
SELECT Classes.class, count(*) as N

FROM Classes, ClassStudents as CS,
ClassTeacher as CT, People

WHERE Classes.classuid = CS.classuid AND
Classes.classuid = CT.classuid AND
CT.personuid = People.personuid

GROUP BY Classes.class
HAVING count(CS.personuid) >= 2;

 class | n | teacher
--------------+---+---------
 Art Hist 101 | 2 | Jones
 Econ 101 | 3 | Smith
(2 rows)

Query Language
SELECT Classes.class, count(*) as N,

People.person as Teacher
FROM Classes, ClassStudents as CS,

ClassTeacher as CT, People
WHERE Classes.classuid = CS.classuid AND

Classes.classuid = CT.classuid AND
CT.personuid = People.personuid

GROUP BY Classes.class, People.person
HAVING count(CS.personuid) >= 2;

 class | n | teacher
--------------+---+---------
 Art Hist 101 | 2 | Jones
 Econ 101 | 3 | Smith
(2 rows)

Types of Joins

● Cross Join (Cartesian Product)

SELECT *
FROM table1, table2;

● Inner Join

SELECT *
FROM table1, table2
WHERE table1.joincol=table2.joincol;

SELECT *
FROM table1 INNER JOIN table2

ON (table1.joincol=table2.joincol);

Types of Joins

● Outer Joins Create NULLs

SELECT *
FROM table1 LEFT JOIN table2

ON (table1.joincol=table2.joincol);

SELECT *
FROM table1 RIGHT JOIN table2

ON (table1.joincol=table2.joincol);

SELECT *
FROM table2 FULL JOIN table2

ON (table1.joincol=table2.joincol);

Review of RDBMSes

● Oracle, MS SQL Server
● Industry standards
● Expensive

● MS Access, LibreOffice Base
● Graphical
● “User friendly”
● Inexpensive
● Slow/Not scalable
● LO Base can act as frontend for MySQL,

PostgreSQL

Review of RDBMSes

● MySQL
● Open-source
● Fast
● Lots of newbie friendly documentation

● PostgreSQL
● Open-source
● Strict(er) adherence to relational model
● High signal:noise ratio on mailing lists, discussion

groups, etc.
● Very thorough documentation

Recommended Resources

● SQL for Smarties by Joe Celko

● Database Modeling & Design by Toby J. Teory

● PostgreSQL Online Documentation at
http://www.postgresql.org/docs/

● An Introduction to Database Systems by Chris
Date

● SQL and Relational Theory by Chris Date

● Developing Time-Oriented Database Applications
in SQL by Richard T. Snodgrass

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

